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ABSTRACT 

The free electron laser (FEL) is of great interest to the United States Navy for shipboard 

use.  The Naval Postgraduate School (NPS) Beam Physics Lab has designed and, in 

cooperation with other organizations, constructed a superconducting 500 MHz quarter-

wave gun and photocathode drive laser system.  The cathode of the gun is mounted onto 

a ~60 cm copper stalk assembly that will position and hold the cathode at the nose cone 

of the gun.  This thesis will explore the necessity to cool the cathode stalk assembly that 

will have approximately 100 W of laser, RF, and radiated heat distributed on it.  Based on 

the operational requirements of the MK I quarter-wave gun, a cooling system was 

designed to run liquid nitrogen internally through the stalk.  Simulations were run on 

COMSOL to determine the effectiveness of the design, followed by the creation of a test 

stand to physically assess the cryogenic cooling system.  Data was found verifying the 

applicability of the system.  Recommendations are made for future experimentation using 

the cathode stalk cooling system test stand based on the results of this thesis. 
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I. INTRODUCTION 

This thesis focuses on creating a cooling system for the copper cathode stalk in 

the MK1 quarter-wave electron gun that may also be utilized in future derivations of the 

gun.  While this thesis does not directly concentrate on the entirety of the free electron 

laser (FEL), it will be beneficial to understand a brief history of directed energy and the 

benefits of FELs over other types of lasers. 

Almost a century ago, Albert Einstein laid the groundwork for the maser and laser 

when he established the theoretical foundations through a re-derivation of Planck’s law of 

radiation.  Concurrently, advances in electromagnetic theory led to the development of 

radar and components, such as magnetrons, microwave tubes, and klystrons, which 

allowed the production of coherent microwave radiation.  Charles H. Townes 

demonstrated the maser in 1953, producing coherent electromagnetic waves.  The maser 

was used as a foundation for developing the laser, which produces coherent optical 

waves.  The term laser was coined by Gordon Gould a graduate student of Townes.  In 

1960, Theodore Maiman was the first to build and demonstrate a working laser.  Maiman 

used a synthetic ruby crystal as his energy-absorbing material and a flash lamp as the 

excitation source.  A photon beam was created using the flash lamp to pump energy into 

the ruby which allowed the excitation of electrons in the ground state to a higher state.  

When the electrons transitioned from the excited state back to a lower state they emitted a 

photon.  These photons stimulated other excited atoms in the material to emit in phase 

with the incident photon, creating an outpouring of coherent photons, which were 

collected in a cavity that uses optical lenses and mirrors to direct and focus the photon 

beam.  While Maiman’s laser opened the door to the possibilities and uses of the laser, it 

also demonstrated that this type of laser would always suffer from physical limits related 

to the lasing medium (e.g. overheating, cracking, distorting).  The gas lasers were the first 

high energy lasers, but were still limited in power production [1]. 

In 1973, the first chemical lasers were operational.  These lasers were powerful 

and piqued military and industrial interests.  The chemical lasers are limited as weapon 

systems by the amount of chemicals that must be carried in order to operate, the toxic and 
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corrosive nature of their feed and exhaust chemicals, and the resulting supply chain 

demands.  While the U. S. Navy was interested in the laser as a shipboard weapon system 

the chemical laser provided too many hazards to the crew and ship, along with needing 

large storage areas for the chemicals [1]. 

At Stanford University, in 1971, J. M. J. Madey proposed the first FEL [2].  

Madey combined multiple concepts such as undulators, optical resonators, and 

application of concepts from microwave tubes with atomic lasers to develop the FEL.  

These lasers use relativistic bunches of electrons, not bound within any medium, to create 

laser light.  This allows them to achieve much higher power without having to worry 

about the effects on, or from, a medium.  In addition, as an all-electric system, it provides 

a limitless (within the bounds of available fuel to run ship’s generators) amount of 

ammunition for the laser, unlike the chemical laser.  FELs are intrinsically broadly 

tunable in wavelength, and tend to scale to higher wall-plug efficiency at high power.  

Power output can be scaled in a variety of ways, by adjusting the peak electron beam 

current or the repetition rate between electron bunches.  These advantages allow the 

overall output, power and wavelength, to be varied without having to alter the system 

construction. 

High-power FELs may very well be the future for the U.S. Navy, providing an 

extremely efficient, reliable weapon system that operates at near the speed of light with a 

limitless supply of ammunition.  FELs also have numerous opportunities in commercial 

industry, scientific research, and even space applications.  There are some draw backs to 

FELs, the major two being the size and initial cost of the system, both of which are being 

researched to be reduced to a viable size and price for shipboard use.  This includes 

optimizations of subsystems such as the electron beam sources.  One design under 

consideration is the MK1 quarter-wave electron gun.  This thesis will look at developing 

a cooling system for the copper cathode stalk used to hold and adjust the cathode inside 

the MK1’s superconducting cavity. 

Chapters II and III will discuss the components and theory of the free electron 

laser.  This will provide an understanding of how all of the FEL pieces fit together, and 

how electrons can be used to generate a coherent beam of light as a usable laser beam.  In 
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Chapter IV, the development of the MK1 quarter-wave gun will be examined, in addition, 

reasons for needing a cathode stalk cooling system will be discussed. 

Chapter V discusses the design and construction of a cathode stalk test stand and 

cooling system, to include the design parameters and the computer simulations that led to 

the chosen design.  Chapter VI discusses and compares the experimental results and 

makes recommendations for further designs and tests.  
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II. FREE ELECTRON LASER DESCRIPTION 

An FEL generates electromagnetic radiation from a relativistic beam of electrons.  

The process the electrons go through and components they encounter from generation to 

laser generation to disposal, is described here. 

There are two major types of FEL configurations, the oscillator and the amplifier. 

The designs share many of the same components, and are shown in Figure 1, a diagram 

of a recirculating energy recovery FEL.  The major difference between amplifiers and 

oscillators is the extraction process of energy in the form of light from the FEL.   The 

amplifier design amplifies an existing “seed” optical field; it relies on the electron beam 

energy being transferred to the light wave on a single pass through the undulator.  The 

oscillator on the other hand is used in conjunction with several passes to generate the 

output beam.  It is designed with an optical cavity that is enclosed by mirrors and 

contains an undulator in the middle.  In both designs a small amount of electron energy 

on the order of 1–5% is transferred to the optical beam. 

 

 

Figure 1.   FEL Schematic (From [4]). 
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FEL beam generation and transport components include an injector, accelerator, 

undulator, resonator (for the oscillator design), seed laser (for an amplifier design), and 

beam dump.  To shape and direct the electron beam focusing and bending magnets are 

used.  The beam is transported within a vacuum enclosure, required both to prevent 

scattering of the electron beam and for the operating of the accelerator cavities.  The 

following sections of this chapter will describe these components. 

A.  INJECTOR 

Electron beam creation begins with the injector.  The injector is primarily made 

up of a cathode and an electron gun.  The injector uses the cathode to produce a beam of 

electrons with a small spread in energy (velocity).  There are three main types of 

cathodes, photocathodes, thermionic cathodes, and field emission cathodes.  The 

photocathode uses the photoelectric effect with a pulsed drive laser of appropriate pulse 

length and energy to illuminate a cathode, thereby releasing electrons.  The drive laser 

wavelength is chosen to overcome the work function of the cathode, allowing electrons to 

become free of the material.  The drive laser also determines the electron pulse structure.  

Thermionic cathodes apply heat to a metal.  Heat is added, increasing the thermal energy 

of the metal, until the energy of some of the electrons exceeds the work function, and the 

electrons are freed.  Lastly, field emission cathodes rely upon geometry to create 

locations of high electric fields.  The cathode is made up of tips, often pyramid shapes, 

where the electric field is enhanced.  The field is enhanced so greatly at the field emitter 

tips that it allows the external field to be sufficiently strong to exceed the internal field 

that determines the work function, thus allowing the electrons to be “sucked out.” 

The electron gun provides the initial acceleration to electrons given off by the 

cathode.  There are two principal types, direct current (DC) and radiofrequency (RF).  

Direct current guns are most often limited by achievable acceleration gradient, i.e., 

electric field, which can limit the charge per bunch of the electron pulses to less than 

1 nC [3].  RF electron guns release electrons from the cathode and emit them into an RF 

cavity.  The electrons can be accelerated in the RF cavity to higher energies (~5Mev) 
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prior to entering the linear accelerator, permitting a larger charge per bunch and a better 

beam quality.    The RF gun is described in greater detail in Chapter IV. 

FEL system performance is greatly affected by injector design, from cathode to 

gun choice.  The goal is to produce an electron beam that is of the highest beam quality, 

and with the least variation in electron energies consistent with high charge per bunch.  

Reaching this goal will help the rest of the FEL system to radiate more efficiently and 

increase the overall power that can be extracted from the FEL. 

B. LINEAR ACCELERATOR 

The superconducting radiofrequency (SRF) linear accelerator (LINAC) is the next 

component encountered by the electron beam.  For this thesis, the focus will be on SRF 

accelerators, as that is the type to be used in the Innovative Navy Prototype (INP).  The 

LINAC consists of several metal cavities that have external RF power supplied, creating 

strong electromagnetic fields within the cavities.  The high voltage electromagnetic fields 

oscillate at the RF frequency and are synchronized to the electron beam pulses, allowing 

the electrons to gain energy over the course of the accelerator.  This allows electrons 

entering the accelerator at 5 MeV to be accelerated up to relativistic energies of 100MeV 

after passing through ten cavities [4].  The relativistic voltages of the electrons are crucial 

to the generation of a laser from electrons.  Figure 1 demonstrates the accelerator position 

in the FEL system, while Figure 2 shows a cut-away of an accelerator module. 

 

Figure 2.   The accelerator is cooled with liquid helium to get the RF cavity to 
superconducting temperatures.  A liquid nitrogen heat shield is used as a 
buffer from room temperatures to minimize the heat load on the helium 

(After [5]). 
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C. UNDULATOR 

Following the accelerator the electron beam will be directed into the undulator, 

which is made up of a series of powerful rare-earth magnets with alternating poles.  This 

creates an alternating transverse magnetic field along the beam path.  The strong Lorentz 

forces move the electrons back and forth, creating a “wiggling” motion.  This wiggling 

causes the relativistic electrons to emit photons to form the laser beam, the theory behind 

this will be discussed further in Chapter III.  There are two main types of undulators, 

helical and linear.  In Figure 3, a design of a linear undulator is shown. 

 

 

Figure 3.   Schematic of linear undulator magnet orientation (From [6]). 

D. OPTICAL CAVITY 

The optical cavity, or resonator, for an oscillator configuration contains the 

undulator.  It also contains two mirrors; one at each end of the cavity surrounding the 

undulator.  One of the mirrors is highly reflective, while the other is partially 

transmissive.  An optical beam will travel down the undulator each pass and will hit the 

highly reflective mirror, then be redirected back through the undulator to the partially 

transmissive mirror.  This reflection is timed with the electron beam pulses to create a 

continuous overlap throughout many passes, resulting in coherent amplification of the 

light beam, demonstrated in Figure 4.  A fractional amount of this beam is transmitted 

through the transmissive mirror to the beam director and out from the ship as a laser 
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beam [4].  Amplifier FELs do not use this configuration, instead they use seed lasers in 

conjunction with the undulator to create the optical beam.   

 

 

Figure 4.   Optical cavity for oscillator FEL (After [4]). 

E. BEAM LINE SUPPORT COMPONENTS 

Bending and focusing magnets are control components used to focus and guide 

the electron beam through the accelerator and FEL to ensure it follows the desired path.  

After the electron beam exits the accelerator it will enter a series of bending magnets 

used to direct the electron beam to the undulator.  The focusing magnets focus the 

electron beam envelope transversely to the propagation axis.  Bending and focusing 

magnets are analogous to prisms and lenses, respectively, in an optical system.  Vacuum 

is maintained in the beam piping and components which also reduces electron scattering 

caused by particles.  All of these components maintain and increase beam quality.  The 

higher the beam quality the more able the beams will be to maintain more of their energy 

in a centrally focused manner, leading to an overall better beam entering the undulator. 

F. BEAM DUMP 

High-power electron beams are being developed for shipboard use by the Navy.  

The laser only uses a small percentage of the power in the electron beam, leaving a large 

amount of power to be reclaimed.  Reclaiming the power increases system efficiency, and 

reduces the amount of radiation emitted.  In an energy-recovering LINAC (ERL) FEL the 

electrons leave the optical cavity and then are redirected back to the accelerator with the 
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bending magnets.  The electrons enter the accelerator 180 degrees out of phase with the 

RF, allowing them to release energy to the RF field, and slowing the electrons back down 

to ~5 MeV [4].  The now decelerated beam is absorbed by the beam dump.  The beam 

dump is a large block of absorbing material, such as graphite and copper, enclosed with 

shielding to prevent outside radiation, and equipped with cooling to manage heating.  

Since the electron beam has been slowed to less than 10 MeV it will not produce 

neutrons, and X-ray generation is significantly minimized, therefore the shielding 

requirements for shipboard use are greatly reduced. 
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III. FREE ELECTRON LASER THEORY 

There are critical differences between free electron lasers and conventional lasers.  

Conventional lasers require a lasing medium; this sets limits to the laser’s power output  

(such as the amount of power the laser is able to produce due to concerns of medium 

heating) and typically allows for only specific wavelengths of operation.  In the FEL the 

electrons are not contained within a medium allowing the user a tremendous amount of 

flexibility in power and wavelength.  This chapter introduces the fundamental principles 

that create a laser from an electron beam. 

A. THE PENDULUM EQUATION AND RESONANCE CONDITION 

Photons will be traveling through the undulator at the speed of light, c.  Electrons 

are accelerated to relativistic speeds (slightly slower than c), and then enter the undulator.  

In this discussion a helical undulator will be assumed to simplify the mathematical 

expressions.  First, a few parameters must be defined, starting with the normalized time τ, 

which varies from 0 to 1 along the length, L, of the undulator.  ζ is the phase of the 

electron, measured by the electron’s relative position to a beam of electrons contained 

within one optical wavelength, λ.  The rate of change of ζ is measured by the phase 

velocity, ν.  The frequency of the optical field is 2 ckc πω
λ

= = .  The optical wavelength λ 

of the photon beam and the undulator period 0λ  have corresponding wavenumbers 

2k π
λ

=  and 0
0

2k π
λ

= .  The principal motion of an electron through the undulator is in the 

z direction, ( ) zz t ctβ= .  The normalized longitudinal electron velocity along this axis of 

the undulator is represented by zν  and z
z c

νβ = .  The coordinates are normalized using 

the following equations: 
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0

0

( )

[( ) ]z

ct
L

k k z t
d L k k kd

τ

ζ ω
ζν βτ

=

= + −

= = + −
 (3.1). 

The optical field amplitude, a, is another dimensionless parameter represented by  

 2 2

4
( )

NeKLEa
mc

π
γ

=   (3.2). 

c
νβ =
vr

 is the normalized velocity, the relativistic Lorentz factor is 
2

2

1

1 c

γ
ν

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟−
⎝ ⎠

, e is 

the charge magnitude of the electron, and m is the mass of the electron.  N represents the 

number of undulator periods, K, the undulator parameter, is a dimensionless measure of 

the field strength 0
22

rmseBK
mc
λ

π
= , and E the beam energy [7].  Strong or weak fields are 

related to the value of this optical field amplitude, if a π≤ , the optical field is weak and 

electrons do not “overbunch”.  If a π , then the laser has strong optical fields where 

overbunching takes place [4].  Figure 5 shows the relationship between electrons and 

photons as a race through the undulator, where the red circles are the electrons, 0λ is the 

undulator wavelength, and λ is the optical wavelength.  

 

 

Figure 5.   Electron-Photon interaction.  Here the red circles are the electrons 
interacting with the optical wavelength, the blue waves, and the undulator 

wavelength, the green wave (From [4]). 

The Lorentz force equations determine the motion of the electrons inside the 

helical undulator.  As photons and electrons travel down the undulator, the photons will 
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overtake the electrons.   As the electrons travel down the undulator they will interact with 

its magnetic field, as well as the optical field.  B
r

is the magnetic field strength and can be 

broken up into undulator and optical components.  E
r

is the optical electric field strength.  

These are defined as  

 

0 0(cos( ),sin( ),0)

(sin( ),cos( ),0)

(cos( ), sin( ),0)

undulator

optical

optical

undulator optical

B B k z k z

B E

E E

B B B

kz t

ψ ψ

ψ ψ

ψ ω ϕ

=

=

= −

= +

= − +

r

r

r

r r r

 (3.3)

. 

 
The net force on the electrons from the net undulator and optical fields in the 

undulator is given by the relativistic Lorentz force equations:  

 

( ) ( )d e E B
dt mc

d e E
dt mc

γβ β

γ β

= − + ×

= − •

r
rr r

r r

 (3.4)

 

where cν β=
rr  is the electron velocity.  We implicitly assume we can ignore space-charge 

forces.  If we then substitute Equation (3.3) into (3.4) we find  

 

0 0

0 0

( ) [ ( cos sin ) ( sin cos )]

( ) [ (1 )(cos , sin ,0) ( sin ,cos ,0)]

[ cos sin ]

z
x y x y

z z

x y

d e E B k z k z
dt mc

d e E B k z k z
dt mc

d e E
dt mc

γβ β ψ β ψ β β

γβ β ψ ψ β

γ β ψ β ψ

⊥

= − − + −

= − − − + −

= − −

r

  (3.5) 

where ˆ ˆ
x yi jβ β β⊥ = +

r
.  The transverse velocity β⊥

r
 of the electron can be then be 

determined by integrating, giving Equation (3.6), assuming the relativistic electrons are 

traveling at approximately the speed of light, 1zβ ≈ .     

 0 0(cos( ),sin( ),0)K k z k zβ
γ⊥ = −

r
 (3.6) 
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Therefore, the dimensionless transverse velocity β⊥ can be represented as 
2

2
2

Kβ
γ⊥ = . 

The resonant wavelength, λ , is determined by the distance that a photon gets 

ahead of the electron in distance 0λ  and in time 0 / zλ β .  This leads to the resonance 

condition when one wavelength of light passes over an electron in one undulator 

wavelength [4].   

 
2

0 0
2

(1 ) (1 )
2

z

z

Kβ λ λλ
β γ

− +
= ≈  (3.7). 

A relationship between an electron’s velocity and its energy is provided by the 

Lorentz factor as, and is used to determine the normalized velocity in the z direction zβ  

[4].   

 
2 2

2 2 2 2
2 2

1 (1 )1 ,  
2z z

K Kγ β β β β
γ γ

−
⊥ ⊥

− +
= − − = ⇒ ≈  (3.8). 

The relationship between d
dt
β  and d

dt
γ is established by taking the time derivative of (3.7) 

in (3.8).   

 
2

2(1 )
z z

K
γ β βγ

γ
=

+

oo

 (3.9). 

Taking the second time derivative of ( )tζ  from (3.1) gives  

 0( ) zk k cζ β= +
oo o

   (3.10). 

Solving for zβ
o

from (3.10), and substituting it into (3.9), the result is  

 
2

2(1 )K
γ γ ζ
γ ω
=

+

o oo

 (3.11). 

The resonance condition stated from (3.3) and microscopic electron motion 

cos( )eKE
mc

γ ζ φ
γ

= +& can be substituted into (3.11) to give  
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 0
2

2 cos( )eKE
mc

ωζ ζ φ
γ

= +
oo

  (3.12). 

 

The dimensionless parameters given in (3.1) and (3.2) are used to simplify (3.12) to  

 cos( )aζ ζ φ= +
oo

, (3.13). 

which represents the microscopic electron motion in the form of the pendulum equation.   

B. OPTICAL WAVE EQUATION 

The microscopic wiggling motion of an electron through the undulator, as 

described in the previous section, will generate and amplify light.  The photons given off 

will create an optical field that interacts with the source current of the bunching electrons 

traveling through the undulator.  Here the evolution of the light will be described by 

developing the wave equation. 

The natural place to begin is with a derivation of the slowly-varying wave 

equation in the FEL interaction region where the current source is due to the bunching 

electron beam [8].   

 

2

2
2

2

4( , ) ( , ),t A x t J x t
c c

π
⊥

⎛ ⎞∂
⎜ ⎟∂∇ − = −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

r rr r  (3.14) 

where ˆˆ ˆ/ / / ,i x j y k z∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  A
r

 is the optical potential vector, and J⊥

r
is the 

electron current.  The electric and magnetic fields of the laser can be given by the optical 

potential vector.  Assuming the coherent laser field is varying slowly compared to the 

optical frequency, kcω = , the optical potential vector for a helical undulator can be 

written as [8]  

 ( , ) ˆ( , ) iE x tA x t e
k

αε=
rr r  (3.15) 

where the polarization vector is ( ,1,0)iε = − , the phase of the carrier wave is kz tα ω= − , 

and the laser’s complex laser electric field is iE E e θ= .  The wave’s amplitude and phase 
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are assumed to be slowly varying along the axis of propagation (z axis).  Utilizing this 

assumption, and substituting the simplified optical potential vector (3.15) into (3.14) the 

wave equation can be written as:  

 1 42 ( ) ( , )
ie ik E J x t

k z c t c

αε π
⊥ ⊥

∂ ∂⎡ ⎤∇ + + = −⎢ ⎥∂ ∂⎣ ⎦

r r r r . (3.16) 

This equation can be simplified further by multiplying both sides by ˆ ik e αε , and by 

introducing “The Method of Characteristics,” whereu z ct= − , which will follow the light 

as it travels.  The general wave equation can now be simplified into the parabolic or 

paraxial wave equation [7],  

 2 *1 4 ˆ2 ,ikik E J e
c t c

απ ε −
⊥ ⊥

⎡ ∂ ⎤⎛ ⎞∇ + = −⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

r
 (3.17) 

where 2
⊥∇ represents the transverse Laplacian 2 2 2

x y⊥∇ = ∂ + ∂ , and an electron source 

current, J⊥

r
, represents the total beam transverse current.  The total beam current is the 

summation of all of the single-particle currents and is given by  

 (3) ( ( )),i
i

J ec x r tβ δ⊥ ⊥= −∑
rr r r  (3.18) 

where β⊥

r
is the electron’s transverse motion, (3)δ is the three-dimensional Dirac delta 

function, and ( )ir tr is the trajectory of the ith electron. 

β⊥

r
 represents the transverse electron motion, as it contributes to the transvers 

current density, with  

 0
0 0 ˆ(cos ,sin ,0) Re ik zK Kk z k z i eβ ε

γ γ
−

⊥

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠

r
 (3.19) 

The transverse electron motion (3.19) is then substituted into the current density (3.18).  

This new current density can be used in the parabolic wave equation (3.17) to obtain  

 2

( , )
( , ) ,

2
i

x

iL a x je
k

ζ

τ
τ

τ
−

⊥

∂⎡ ⎤− ∇ + = −⎢ ⎥∂⎣ ⎦
r

r  (3.20) 
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where the dimensionless FEL current density is 2 2 2 2 3 2
08 /j Ne K L mcπ ρ γ= , ρ being the 

electron particle density.  The dimensionless laser field is represented by 
2 2
04 /a NeKL E mcπ γ= , and < > is the average over the electrons in the beam.   

Creating a dimensionless Laplacian operator allows further simplification of wave 

equation (3.20).  Utilizing 1/2( / 2 )x x k L=%  and 1/2( / 2 )y y k L=%  as natural dimensionless 

coordinates, the new Laplacian can be represented by 2 2 2
x y⊥∇ = ∂ + ∂% %

% .  Now we can write 

the dimensionless wave equation as [8]  

 2 ( , )
4

ii a r e ζτ
τ

−
⊥

∂⎡ ⎤− ∇ + = −⎢ ⎥∂⎣ ⎦
r% . (3.21) 

The left side of (3.21) describes the diffraction of the beam.  When small 

diffraction exists, the 2
⊥∇  term is so small that (3.21) can be simplified to  

 .ia j e ζ−= −
o

 (3.22) 

The average ie ζ− represents the amount of electron bunching, and the dimensionless 

current density, j , represents the measure of coupling between the optical and electron 

beams.  There will be only a small coupling between the beams if j π< , but if j π≥ , 

then a large coupling is present.  The rate of change in the optical field, a , is affected by 

both the average electron bunching and the dimensionless current.  The evolution of 

ζ depends on the field a
o

, creating a feedback loop that leads to the growth of the optical 

field.  The optical field grows exponentially until it reaches saturation where the bunched 

electrons evolve further within phase space, and begin to take energy from the optical 

beam vice give energy to it [4].   

C. OPTICAL GAIN 

The fractional gain of the optical beam power or energy is the optical gain.  This 

can be determined by the total energy lost by the electron beam.  Energy transfer occurs 

due to interactions between the optical beam and the electrons.  The interactions between 

electrons and photons can be understood by examining the following two equations:  
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cos( ).

ia j e

a

ζ

ζ ζ φ

−= −

= +

o

oo
 (3.23) 

The dimensionless optical amplitude, a , determines strong or weak fields for FEL 

operations.  If ,a π<  the optical field is weak, if a π> , the optical field is strong.  Here 

φ  is defined as the optical phase. 

In the case of weak fields ( )0a π  and low gain ( )0 j a aπ< =
, 
the amplitude 

and phase evolution can be estimated.  The power series expansion for ζ  can be used to 

solve (3.22) for the lowest order change in the field and phase giving  

 

0 0 0
0 3

0

0 0 0
3
0

2 2cos( ) sin( )( ) 1 ...
2

2sin( ) (1 cos( ))( ) ...
2

a a j

j

ν τ ν τ ν ττ
ν

ν τ ν τ ν τφ τ
ν

⎛ ⎞⎛ ⎞− −
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞− +

= +⎜ ⎟
⎝ ⎠

  (3.24) 

The initial phase velocity of the electron beam is represented by 0ν .  The gain in this 

region is  

 0 0 0
3
0

2 cos( ) sin( )( ) .G j ν τ ν τ ν ττ
ν

⎛ ⎞− −
= ⎜ ⎟

⎝ ⎠
 (3.25) 

If j π≥  and there are weak fields the gain from (3.24) and (3.25) changes, and 

can be estimated as  

 

( )

( )

( )

1
3

1
3

13
2 2

0

1
3

3
2

1 ,
3

1 1 ,
2 2

1 .
9

j

j

a a e

j

G e

τ

τ

τ

φ τ τ

τ

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

≈

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

≈

 (3.26) 
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Figure 6 shows that there is electron bunching at resonance ( )0 0ν = , but as 

Figure 7 shows that with phase velocity slightly off resonance ( )0 3ν = the gain can be 

significantly larger.  In Figures 6–8, the electrons’ initial and final positions through 

phase space are represented by the thin traces from the yellow dot (initial) to the blue dot 

(final).  Changes along the vertical axis ( )ν  are related to the changes in electron energy 

( )4 / ,Nν π γ γΔ = Δ  where /γ γΔ is the change in energy [4]. 

 

Figure 6.   Electron Phase velocity at resonance (From [4]). 
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Figure 7.   Electron phase velocity off-resonance (From [4]). 

Over-bunching of electrons can occur for strong fields, a π≥ .  In this case, the 

electrons are shifted from the proper phase for gain to one for absorption causing the gain 

to decrease significantly, demonstrated in Figure 8. 

 

Figure 8.   Strong optical fields (From [4]). 
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D. BEAM QUALITY 

For FEL theory to hold true there are limits on the angular spread and overall 

beam radius of the electron beam needed to fulfill the assumptions made above; in 

particular overlap in beam size and energy spread of the electron beam.  Electron beam 

transverse quality is based on the divergence and size of the beam.  This is quantified 

using the transverse emittance of the electron beam, ε .   

 22 2' ' b bx x x rε θ= −  (3.27) 

Here x is the transverse position, x’ is the transverse velocity, br  is the radius of the beam 

at the waist, and bθ is the far-field beam divergence.  A normalized transverse emittance 

can also be defined as  

 ,normalized b brε θ γ=  (3.28) 

which is conserved as the beam is accelerated.  Generally, the lower ε , the higher quality 

beam. 

Another factor that determines the overall beam quality is the energy spread or 

phase velocity.  A spread of phase velocities will result due to the finite spread of 

energies in a relativistic electron beam.  This spread of energy impacts the FEL 

interaction as well as the transportation of the beam as it is accelerated, all affecting the 

effectiveness of the Free Electron Laser as a weapon.  The limits on ε  and 
γ
γ
Δ

at the 

undulator can be propagated upstream to the electron beam source.  One way to try to 

generate a beam that fits within these limitations is by creating an improved electron gun.  

This is the path taken by the NPS Beam Physics Lab (BPL) in the development of the 

MK I quarter-wave electron gun.  
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IV. DESIGN OF THE MK 1 SUPERCONDUCTING QUARTER-
WAVE ELECTRON GUN 

The electron gun is one of the major components that determine the maximum 

current and brightness that can be produced by an accelerator.  DC and normal-

conducting radio-frequency electron guns are the most popular for use in FELs today.  

While their technology is highly-developed due to the widespread usage and large 

amount of research that has gone into them, they still have significant constraints when 

operating in conditions requiring low emittance, high average power and high peak 

current, which are required to meet the FEL specification [10].  These limitations have 

led to the quest for a more effective electron gun, one of which is the superconducting 

electron gun.  Among other advantages, shifting to a superconducting cavity significantly 

reduces dissipated RF power. 

A. GUN DESIGN 

The first superconducting quarter-wave resonator electron gun was developed by 

the NPS BPL.  Until its development the limited number of superconducting radio 

frequency (SRF) guns have all had elliptical cavity geometries [9].  The quarter-wave 

resonator geometry has multiple advantages over the previously-used elliptical cavity.  

These advantages include:  

• a smaller cavity size for a 500MHz operating system 

• the ability to operate at relatively low frequencies, and the reduced cost of 
utilizing low frequency RF sources 

• reduced RF losses at the cathode, along with flexibility in how cathodes 
can be mounted in the gun 

• an ability to operate at more relaxed cryoplant temperatures of ~4K while 
retaining compact cavities 

• reduced wake field induced emittance growth and wake field losses  

• allows for a smaller accelerating gap length compared to RF wavelength 
giving a higher transit-time factor, the net result is less sensitivity to 
exactly when the laser beam strikes the cathode  [9], [10]. 
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Originally, the cavity was developed as a booster for the Stanford 

Superconducting Accelerator (SCA) (which had been moved from Stanford and intended 

to be reassembled in a new configuration at NPS), but with the addition of a removable 

cathode stalk and a normal conducting (NC) cathode the cavity could be converted into 

an electron gun.  The cavity was designed to have an operating frequency of 500MHz 

allowing for a beam injection rate of 100MHz into the SCA, while in gun operation the 

goal was the generation of a 1nC bunch accelerated to 1.2MeV [9]. 

Figure 9 shows a cross section of the cavity and cryostat together with the cathode 

stalk and cathode.  Large grain niobium ingots were machined to create the end plates 

and “nose cone” of the cavity, while fine-grain rolled niobium was used to form the side 

walls.  The niobium cavity has stainless steel flanges brazed onto each end, bolted to 

stainless steel piping, and is surrounded by a 6.8 L stainless steel liquid helium reservoir 

vessel [9].  Downstream of the cavity is a NbTi solenoid used for focusing and emittance 

compensation.  Surrounding the liquid helium vessel and solenoid is a liquid nitrogen-

cooled heat shield and multilayer insulation.  Outside of these are a mu-metal magnetic 

shield and a low-carbon steel vacuum vessel.  Vacuum is held between each of these 

layers. 

 

Figure 9.   Cross section of the cavity with the coupler and cathode stalk installed 
(After [11]). 
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To transform the cavity from a booster to a gun a cathode stalk and cathode were 

added to the design.  The stalk is a ~60 cm long hollow stalk made of copper.  As it is 

essentially an antenna into the cavity, the parameters of the stalk were designed to 

minimize RF power dissipation and flow.  The stalk has no direct physical contact with 

the cold cavity, reducing the heat flow into the cavity and the possibility of generating 

particulate contamination.  However, this does allow for some of the RF power to flow 

out of the cavity and along the stalk [9].  Its length is optimized and has transitions in 

radius, to create impedance mismatches to minimize RF power flow into the normal 

conducting region.  The cathode stalk is supported by a Teflon “spider” inside the pipe 

for centering and is attached to a mounting plate at the base of the stalk.  The mounting 

plate is attached to the outer pipe and cryostat by bellows.  The bellows are held in 

position by a series of screws that are also used to adjust the stalk’s pitch, yaw, and axial 

position allowing the cathode position to be adjusted.  This adjustment allows for changes 

in the transverse focusing and axial accelerating fields at the cathode tip, and it also 

changes the power coupling into the stalk region.  This normal-conducting region is kept 

under vacuum with a dedicated pump [9].  There are also two capacitively coupled 

antennas mounted at the end of the stalk used to sense the power on the stalk.  They can 

also be used to disrupt multipacting by injecting an RF signal. 

 

Figure 10.   Detail of cathode stalk assembly with an inserted cathode (After [9]). 
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The cathode stalk is designed to easily change out cathodes.  The cathodes are 

press-fit into the cathode stalk tip enabling testing of other materials and configurations.  

For initial testing a fine-grain normal-conducting niobium cathode was used to prevent 

contamination of the cavity.  It was etched with buffed chemical polish, the same as the 

cavity, and press fit into the cathode stalk [9].  Figure 11 shows the cathode stalk 

machined by Niowave Inc., and a close up of the niobium cathode mounted to the tip. 

 

Figure 11.   Top: Cathode stalk, without cathode, attached to mounting plate with 
Teflon spider in place  Bottom: Detail of installed cathode on stalk tip 

(From [9]). 

A cascade RF power coupler system was used for initial testing.  The first stage is 

a coaxial coupler.  The outer conductor is a stainless steel tube connected to the cryostat 

and cavity with an inner conductor that is a copper hollow tube (very similar to the 

cathode stalk), which can also be moved longitudinally to manipulate the coupling into 

the cavity.  The accelerated electrons from the gun are directed through the hollow inner 

conductor.  The second stage is a pair of capacitively coupled antennas similar to the ones 

used on the cathode stalk.  These couple the RF energy into and out of the coaxial 

coupler [9].   

The gun’s RF source is driven by a reference oscillator (83.3 MHz) and frequency 

multiplier, which provides a 500 MHz input into the solid state amplifier (SSA) as well as 

providing the timing signal to the UV drive laser.  This amplifier is capable of delivering 
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100W forward power to the cavity.  The system can be easily upgraded to kW or higher 

power.  A circulator is used to send the reflected power to a dummy load.  A variable 

attenuator is installed before the amplifier to control the input power into the cavity while 

maintaining constant power for the laser timing and reference arm of the phase detection 

circuit.  Figure 12 is a schematic demonstrating the flow of these components.  

 

 

Figure 12.   Schematic of the RF control circuit (From [9]). 

A modified Coherent Elite DUO (generating 266nm light at nominal energy of 

1mJ per pulse) laser is used to produce photoelectrons from the gun [9].  The laser beam 

diameter at the cathode can be adjusted using plates with 1 or 5 mm apertures that are 

inserted into the laser path.  Without the plates the maximum laser diameter at the 

cathode is 10mm.  The laser is directed through a vacuum window onto the cathode by a 

one square-inch aluminized fused silica mirror inside the beam line laser cross [9]. 
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B. INITIAL TESTING 

Cryogenic testing was completed in two phases.  The first was cavity operation 

without the cathode stalk.  The cavity was cooled to ~4 K within two hours, and had a 

measured frequency shift from 500.3 MHz at room temperature to 501.0 MHz at 

cryogenic temperature.  It had a static heat load of about 1.5 W, using approximately 

2.1 L of helium per hour.  Testing also showed that operating at temperatures lower than 

4 K significantly improved the cavity quality factor (Q).   

In the second phase of testing the cathode stalk and cathode were installed.  Here 

the cavity temperature was maintained around 5 K (as indicated by the temperature 

sensor on the top of the cavity).  The Coherent Elite DUO laser was used to generate 

beam from the Niobium cathode.  Beam properties seemed unaffected by temperature 

changes below 6 K, but as the temperature approached 7 K the beam shape became 

distorted.  Typical operation was at 10 W RF power to the cavity, and required ~14 L/hr 

of helium to maintain superconductivity temperatures around 5 K.  Including overnight 

operations sustaining 5 K temperatures, an average of 250 L of helium was consumed per 

day.  Overall the system operated quite reliably throughout six days of experiments, 

largely exceeding expectations.  No fundamental limits were reached for bunch charge 

and beam energy, and the emittance measured is suitable for FEL operation in the 

infrared wavelengths as required by the NPS facility.  More detailed experimental results 

are available in Ref [9].   

C. MOTIVATION FOR DEVELOPMENT OF A CATHODE STALK 
COOLING SYSTEM 

The experimental results from the electron gun operation revealed that the 

consumption rate of helium from operation of the cavity without the cathode stalk to full 

operation as an electron gun significantly increased the rate of helium consumption from 

2.1 L/hr to 14 L/hr.  This increase is due to additional heating from the cathode stalk and 

NbTi solenoid operation, as well as RF losses on the cavity walls, and electron field 

emission.  The solenoid was intended to be superconducting.  It was attached to the liquid 

helium vessel with two copper bars, but the heat transfer was insufficient, once this is 



 29

corrected the heating will be much lower and mostly due to the cathode stalk and RF 

losses.  There are multiple diagnostics throughout the gun, including temperature sensors 

on the cavity exterior walls, but currently there is no way to monitor the temperature on 

the cathode stalk, or at the cathode itself.  While the stalk has no physical contact with the 

cold cavity, which reduces the heat flow into it, the significant increase in the heat load 

during full operation suggests the need to further analyze temperatures experienced at the 

cathode stalk, and search for a way to reduce the load on the helium cryostat.   

While so far only operated at 10 W forward power the SSA is capable of 

delivering 100 W forward power to the cavity, which will in turn also be distributed 

along the stalk.  Simulations and parameters determined by diagnostics already in the 

electron gun show that the electric and magnetic field is highest at the nose cone, which 

will also affect the temperature of the cathode stalk.  Lastly, because of the open 

configuration and no choke cavity filter, some RF power flows out of the cavity affecting 

the temperature of the cathode stalk as well.  All of these considerations have led to the 

need for a test stand to measure the temperature of the cathode stalk under similar 

circumstances, along with the ability to test different cooling systems to reduce the heat 

load that will be put on the helium cryostat. 
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V. CATHODE STALK TEST STAND AND COOLING SYSTEM 
DESIGN 

As stated in Chapter IV, a test stand is needed to study the temperatures on the 

cathode stalk.  It is also needed to develop an effective cooling system that will decrease 

the heat load carried by the helium cryostat.  Excessive heat in the cryostat may cause the 

helium to boil, causing cavitation and vibration. In turn, this increases the cavity 

frequency jitter.  This will also lead to quenching, taking the cavity from superconducting 

back to normal conducting.  Also, while the BPL group is currently using niobium 

cathodes the intention is to use cesium telluride photocathodes in the future.  Heat causes 

cesium to be “knocked off” of these cathodes shortening their lifespan.  With the cathode 

stalk being cooled the cathode in turn will also be at lower temperatures, theoretically 

increasing its usable lifespan.  The existing test stand will be used to study the effects of 

cryogenic temperatures on cathode lifetime and efficiency as part of another student’s 

thesis work. 

The goal of the cathode stalk test stand is to reproduce similar controllable 

conditions on the cathode stalk as occur in the MK I quarter-wave gun, and to measure 

the temperature effects of these conditions, as well as the ability to install and test cooling 

systems.  This is the first time that a cooling system has operated in this kind of 

environment, and it was unknown how the cooling would affect the system.  To begin 

with, we considered what additional data was needed from the test stand, for instance, 

shrinking and deflection of the copper stalk.  We also needed to know how much cooling 

would be needed, if conduction cooling is enough, and the kind of flow rates needed to 

produce the desired effect. 

A. DETERMINING THE DESIGN 

Options for a coolant were explored and liquid nitrogen (LN) was chosen.  Water 

was ruled out because of potential freezing and behavior.  If the MK I stopped operating 

while still being cooled the water would most likely freeze and expand.  This could 

damage the stalk, and in extreme cases could cause the stalk to crack allowing for water 
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leaks into the cavity once it was brought back up to room temperature.  This would incur 

time consuming and expensive cleanup, or ruin the MK I all together.  Another coolant 

considered was low temperature helium gas, and in later testing this may be a viable way 

to cool the cathode stalk, but for initial testing the use of helium proved more 

complicated to use than the benefits it provided.  Once the coolant was chosen a back-of-

the-envelope calculation was performed using the heat capacity of liquid nitrogen to 

determine a rough estimate of the flow needed to cool the system receiving 100W of 

power to LN temperatures.  The calculation indicated that approximately 12 mL/s of LN 

would be required to cool the system.  Another requirement was the need for the coolant 

to leave the stalk at the same place it entered, preferably in some sort of piping to create 

an additional barrier against leaks.   

Utilizing COMSOL, a multi-physics program, a simulation was created to 

determine where the maximum temperature would be located.  The stalk was drawn in 

Rhino (a CAD program), then imported into COMSOL, where its inner surface was set to 

77 K to simulate a LN bath.  The numbers for the RF and laser heating were taken from a 

simulation executed in Superfish by Professor John W. Lewellen and applied separately 

to the stalk in COMSOL.  The results from applying 100 W to the tip were as expected, 

with the highest temperature at the cathode at the tip of the stalk as can be seen in  

Figure 13. 

 

Figure 13.   The top portion is a cut away of the cathode stalk with the cathode mounted 
on the tip.  The maximum temperature is on the very tip of the stalk and is 

simulated to be 96.6 K.  Dark blue is 77K. 
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The results given in COMSOL support concentrating the cooling at the tip of the cathode 

stalk.  We decided on a helical design utilizing 1/8 inch copper tubing which has an 

inside diameter of 2 mm.  We used COMSOL to model the flow, setting the inlet pressure 

to 50 psi with six turns in the helix.  Figure 14 shows the results of this simulation.  

Although the COMSOL simulation showed the flow as being half of the required amount 

for cooling the stalk we decided to do a physical test of flow with water.  The helix used 

in the experimental test had ten coils, as, after further discussion, this is what would be 

preferred for use in the cathode stalk due to the dimensions of the stalk.  The 

experimental model was connected to a sink faucet, shown in Figure 14, where the 

pressure was measured to be approximately 60 psi.  The flow from the helical tubing was 

measured to be roughly 20 ml/s, well over the flow needed for cooling the stalk.  There 

were significant differences between the simulated and experimental data, this could be 

due to modeling errors.  LN has a considerably lower viscosity than water, so this result 

is surprising, but is to our benefit.  With this data in hand design of the test stand began, 

along with the first cooling system to be tested in it. 

 

Figure 14.   Left: COMSOL simulation of flow through 1/8” copper tubing, resulting in 
a maximum flow rate of 6.1 ml/s.  Figure 14.  Right: Set up used for 

experimental testing of the helical design with water. 

B. TEST STAND FABRICATION 

A hollow copper stalk, similar to the parameters of the stalk used in the MK I, 

was designed in Rhino and fabricated by Don Snyder, as shown in Figures 15.  The stalk 
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was created in 4 pieces that screw together.  This was to enable easy change out of 

cooling systems, and also allow for the addition of a cathode at the tip. 

 

 
Figure 15.   Top: Rhino model of test cathode stalk.  Bottom: Completed test cathode 

stalk screwed into double sided flange used to mount into the test stand 
vacuum system. The stalk can be screwed apart at each place where it 

changes diameter as well as the tip. 

The coil was also designed in Rhino, along with a vacuum chamber in which to 

mount the cathode stalk for testing, as shown in Figure 16.   

 

Figure 16.   Top Left: Rhino design of cooling coil in cut-away view of the cathode 
stalk.  Top Right: Fabricated cooling coil used in test stand.  Bottom Left:  
Vacuum system designed in Rhino utilizing models of crosses and nipples 
from Lesker.com.  Bottom Right: Assembled vacuum chamber test stand. 

The coil has ten loops in the helix, starting in the middle of the length of tubing 

with one piece wrapping around the other going toward the end of the tubing.  After the 
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tenth coil the tubing is straightened out parallel to the center piece.  The helix has been 

coiled so that it will fit snugly inside of the cathode end of the stalk, with the top bend 

touching the screwed in cathode surrogate, and the coils along the walls of the first 

section of the stalk.  To insert the coil into the stalk the tip was removed and the coil 

screwed down into the stalk.  The two ends of the tubing protruding from the base of the 

stalk were to be attached to the coolant feed lines.  The vacuum chamber was designed 

and built with 4-5/8 inch conflat flanges, allowing for the chamber to be directly mounted 

onto the MK I quarter-wave gun.  This would allow for in-system testing to determine the 

actual effectiveness.  Two six-way crosses were used, with two nipples and the blank 

flange supporting the stalk to make up the vacuum chamber.  A third nipple may be used 

if a cathode is attached to the stalk to increase the range of the tip from the edge of the 

vacuum chamber.  The blank flange came as a solid piece, and was machined with a 

threaded hole in the center to hold the cathode stalk.  It also had three slots machined out 

to allow for good vacuum conductance, shown in Figure 17.  Reducer flanges were used 

to mount windows, and feedthroughs for a power supply, fluid lines, and sensors, as well 

as cold cathode gauges to monitor vacuum pressure.  Two windows were mounted at the 

cathode tip side of the stalk, one on top and one on the side, to allow for monitoring of 

any changes in the position of the stalk; in addition, they provide the ability to monitor 

cathode operations if the tip is replaced with a cathode.  The vacuum pump and cold 

cathode gauge are both attached to the six-way cross at the tip of the stalk.  Another 

window is at the cross at the base of the stalk, looking into the opening of the stalk.  The 

six-way cross at the base also supports LN connections on the top, and the power 

feedthrough and sensor adapter on each side of the cross.  These can be seen in Figure 18. 
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Figure 17.   Left: Design of double sided flange in Rhino.  Right: Double sided flange 
being machined for use in the vacuum system. 

 
Figure 18.   Test stand layout. 

Once the cooling system and vacuum chamber were assembled the next step was 

to add the temperature sensors and heater cord to simulate the heating from RF power the 

stalk would receive in the MK I.  The stalk was outfitted with four DT-670C-SD silicon 

temperature sensor diodes from Lake Shore Cryotronics.  These diodes have a wide 

temperature range (from 1.4 K to 500 K) giving us the ability to test extremes and change 

cooling mediums without having to change temperature sensors.  These are the same 

model of diodes used in the MK I electron gun, which will make eventual integration 
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easier.  The diodes were soldered to 30 AWG Kapton wire to extend the leads.  The 

Kapton wire is vacuum compatible and is also able to withstand temperatures over 500 K.  

One diode was mounted to the bottom of the of the stalk tip, prior to it being screwed 

onto the stalk, with Apiezon grease and a small piece of hard plastic that was screwed 

into the cap.  The other three diodes were mounted along the outside of the stalk with 

Apiezon grease and zip ties as shown in Figure 19.  The Apiezon grease is used to get 

good thermal contact between the diodes and the stalk. 

 

Figure 19.   Left: DT-670C-SD diode.  Right: Cathode stalk with mounted diodes.  The 
circles indicate the location of the diodes, with the one at the tip of the stalk 

being inside of the stalk. 

The leads were then soldered into a nine-pin type D subminiature feedthrough  

flange that is plugged into a Lake Shore temperature monitor.  The monitor feeds the 

temperature readings into a LabVIEW program developed by Prof. Richard Swent which 

records the temperatures every five seconds and displays an hour plot of all four of the 

diode readings, as well as recording the data to disk.  After the diodes were mounted the 

stalk was wrapped in OMEGA wraparound heating cord designed for small diameter 

objects.  It is covered in a double-braided fiberglass outer sheath and operates up to 120 

V, 260W.  The cord is 12 feet long, and is wrapped around the stalk in its entirety, as can 

be seen in Figure 20, with turns per unit length being proportional to the fraction of heat 

expected to be deposited on the stalk in the MK I according to simulation.  The cord was 

then connected to the power feedthrough which on the atmosphere side is attached to a 
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regular wall plug.  This is used in conjunction with a Variac to adjust the wattage to 

100W.  The heater cord has a measured resistance of 58 Ω.  When the Variac is set to 64 

percent of 120 V output, it supplies a measured 76.3 V, providing 100 W of heat to the 

cathode stalk. 

 

Figure 20.   The cathode stalk is wrapped with the heating cord and being tested, in 
conjunction with the diodes, with the variac prior to completing the 

assembly of the vacuum chamber. 

A fill-pot, built by Richard Swent and Mark Galt for the MK I, is used as a LN 

phase separator to provide more consistent LN flow to the cathode stalk cooling coil by 

eliminating or reducing gas bubbles.  This allows the system to cool faster and stay cold 

more efficiently.  The fill-pot is connected directly to the dewar through a solenoid valve 

controlled by an AMI Model 186 Liquid Level Controller.  There is a sensor inside the 

fill-pot to determine the level of the liquid.  The fill and stop fill levels are set by the user, 

and in turn are used by the controller to open and close the solenoid valve when these 

levels are reached.  Initially, the cooling coil was connected to the bottom of the fill-pot 

using a gravity feed to flow the LN through the system.  The return line on the cooling 

coil was connected to the fill-pot to recover any returning liquid, and gas is vented 

through tubing in the top of the fill-pot.  Current operations have the fill-pot somewhat 

pressurized, and the cooling coil exhausting to atmosphere instead; this will be discussed 

more in Chapter VI.  Figure 21 shows the fill-pot with the test stand. 
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Figure 21.   Left: Cut-away view of fill-pot (provided by Richard Swent).  Right: The 
blue cylinder is the fill-pot.  The dewar is connected to the top of the fill-

pot, the cord connects the sensor to the liquid level controller.  In this 
configuration the cooling coil exhausts to atmosphere. 

Lastly, two cameras are mounted at both windows viewing the cathode tip.  These 

positions can be seen in Figure 22.  The cameras have high resolution and are connected 

to a computer operating through LabVIEW with a program designed by Richard Swent.  

The cameras are utilized to take pictures at different temperatures and compare them to 

determine bending and deflection in the cathode stalk. 
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Figure 22.   Cameras mounted to view tip of cathode stalk to record bending and 
deflection. 

Since initial fabrication, changes have been made to the test stand to make it 

operate more efficiently.  These will be discussed in the next chapter along with the 

results and findings. 
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VI. CATHODE STALK TEST STAND EXPERIMENTAL 
RESULTS AND RECOMMENDATIONS FOR FURTHER TESTING 

Broadly speaking, the cathode stalk was tested under three conditions: without 

cooling of any sort other than conduction; with water cooling; and with liquid nitrogen 

cooling.  To make interpretation of these results easier to read we first introduce some 

nomenclature.  The temperature measurement diodes along the stalk will be referred to as 

T1, T2, T3, and T4, and represent the temperatures along the stalk, starting from the tip 

of the stalk, as shown in Figure 23.  Recall that T1 is on the inside of the stalk just under 

the tip cap, while diodes T2-T4 are on the exterior of the stalk.  Temperatures were 

measured on the vacuum housing as well with a thermal camera.  These temperatures will 

be referred to as HT1, HT2 and HT3, again started at the location of the stalk tip and 

progressing to the end.  The position of these temperatures can be seen in Figure 23 as 

well. 

 

 

Figure 23.   Top: Illustration of temperature sensor diodes locations, T1 being inside of 
the cap at this position.  Bottom: Spots where thermal camera was focused 

to obtain temperature.  Note, HT3 is on the mounting flange connected 
directly to the cathode stalk. 
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A. INITIAL TESTS 

The cathode stalk was initially tested with no cooling.  The vacuum chamber was 

pumped down and holding steady at 53.7 10x − Torr, and all four temperature sensors were 

reading from 292–293 K.  Power was slowly applied utilizing the Variac.  The slow 

transition was for two reasons: to obtain an estimated equilibrium temperature at several 

applied power settings: and to allow the vacuum chamber and stalk to “bake out” 

gradually as the various materials were heated.  The Variac was raised in ten percent (of 

120 V) increments up to 50 percent, and then in five percent increments until reaching 

64 percent, corresponding to 100 W applied to the cathode stalk.  The power was 

maintained at each step until the temperature reached a steady state.  The results are 

shown in Figure 24.  The final temperatures at the tip of the stalk (those having the most 

effect on the cavity) for 100W were T1 = 439.4 K and T2 = 439.4 K.  The heat load was 

then calculated to determine the load it would place on the helium cryostat utilizing [12]  
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where 8 2 45.67 10  W/m Kσ −= ×  is the Stefan-Boltzmann constant, A is the area of the 

stalk adjacent to the superconducting cavity, and ε is the emissivity of the stalk (cavity 

wall).  The area was estimated based on the amount of the stalk in the nose cone, at 

12 cm length, with the radius in this section being 1.27 cm.  The emissivity of niobium at 

room temperature is estimated to be 0.374 [13].  The emissivity of copper is highly 

dependent on the extent of polishing and the amount of oxidation on the metal, and can 

range from 0.015 – 0.78.  Emissivity in copper goes up with oxidation, and the stalk in 

the MK I will be polished, so here a range of numbers from 0.05-0.2 will be used for the 

emissivity to get a range of q .  T1 is the temperature of the stalk that will be located in 

the nosecone (T1 and T2 in Figure 23) measured to be 439.4 K, and T2 is the temperature 

of the niobium cavity, 4.2 K.  The active heat load on the helium cryostat from the cavity 

alone (when operated at the maximum accelerating field) is ~10 W.  With no cooling, an 
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additional heat load from the cathode stalk can be anywhere from 0.93–3.02 W, 

depending on the actual emissivities of the niobium and copper, which is about a 10–30% 

increase of the active heat load on the cryostat.  To put this into perspective, the passive 

heat load of the cryostat (e.g., with no accelerating field in the cavity) is approximately 

2 W and requires 50 L per day of LHe to maintain the cavity at 4.2 K.   
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Figure 24.   Plot of temperatures taken as applied power was increased, with error bars 
of 2 W.  This data was taken prior to the LabVIEW program being 

established. 

During this first test the vacuum chamber was “baked out,” and an increase in 

voltage also increased the vacuum pressure in the chamber.  In particular, materials 

which have not previously had heat applied when under vacuum (such as the heater tape) 

tend to release large amounts of gas under these conditions, and can raise the pressure in 

the chamber significantly.  Once the heat had driven off all of the gas the pressures 

dropped back down.  This can be clearly seen in Figure 25.  The temperature of the 

vacuum chamber was also taken with a FLIR Thermatrak camera at the positions  
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illustrated in Figure 23.  HT1 and HT3 were measured to be 307 K, and HT2 was 309 K.  

The middle of each of the nipples, were also measured with a temperature of 323 K.  
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Figure 25.   Left: Demonstrates the pressure increases and drops over the duration of the 
applied power.  Right:  Plots the pressure change over time, better 

representing the pressure rise and decrease. 

The cooling system was then tested with a water chiller, which was easier to 

establish basic operation with than an LN2-based system.  A NESLAB ThermoFlex1400 

was used to feed 283 K water into the cooling coil through the fluid feeds at 48 psi.  The 

chiller was set up in the evening, with the stalk temperatures at a room temperature of 

293 K, and left on overnight to ensure a steady temperature prior to adding power.  The 

cooling system worked optimally overnight with temperatures ranging from 284–289 K.  

The 289 K reading was at T4, where a higher temperature was to be expected due to the 

flange the stalk was mounted to being, generally, at room temperature.  Power was 

applied in ten percent (of 120V) increments up to 50 percent and then increased to 64 

percent for a total of ~100 W.  The chiller was able to maintain relatively stable 

temperatures with the least increase in temperature at the front portion of the stalk where 

the cooling coil is located.  The temperature at T1 and T2 steadied out at ~289K with 

100 W applied.  T3 and T4 were significantly higher at 318 K and 344 K, respectively, as 

was expected due to the limited amount of cooling in these portions of the stalk.  Figure 

26 shows the progression of the temperatures varying with power and with time.  After 
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the operability of the test stand was verified with cooling water the next step was to blow 

out the water with high pressure air and shift the cooling medium to LN. 

 
Cathode Stalk Cooled By Water Chiller
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Figure 26.   The test stand is operating as expected, with temperatures T3 and T4 higher 
than the front of the stalk.  T1 and T2 offer promising results in this initial 

phase. 

B. TESTING WITH LIQUID NITROGEN 

1. Initial Configuration 

The test stand was connected to the fill-pot (as shown in Appendix C) and the fill-

pot input was connected to a LN dewar through a solenoid valve.  The liquid level 

controller was set to open the solenoid valve when the fill-pot level was at 0.7 inches and 

close when the level reached 6.5 inches.  A leak from the valve controller body became 

apparent upon opening the liquid valve on the dewar.  After multiple attempts to tighten 

the valve it was removed and a hairline defect or scratch running across the threads of the 

valve body was discovered and taken to be the most likely source of the leak.  The dewar 

was then connected directly to the fill-pot and controlled manually from the tank valve, 

while still using the fill-pot liquid level monitor to judge when to open and close the 

dewar.  The initial temperatures on the cathode stalk were at room temperature (from 

293–294 K), and vacuum was maintained at a pressure of ~ 610−  Torr.  For the initial 

cooling test with the fill-pot, the dewar was opened at 1050 to begin fill of the fill-pot.  

Temperatures on the cathode stalk did not begin to drop until 1120, and finally bottomed 
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out at 1339 with T1=244.1 K, T2=244.7 K, T3 = 253.7, T4 = 271.3.  After 1339 the 

temperature began to increase.  This is suspected to be because of a lack of differential 

pressure between the cooling coil input and exhaust to maintain a strong enough flow to 

continue cooling the system.  Figure 27 shows the progression of the temperatures over 

time.  There are fluctuations at various intervals; these are due to filling the fill-pot.  The 

pressure from the open dewar increases the flow rate of the LN flowing through the 

cooling coil causing the temperature to drop more drastically, but would then lower the 

fill-pot level and the amount of LN going into the coil.  It could be seen that the more full 

the fill-pot, the more significantly the temperature would drop.  The results from the first 

test showed that this configuration would not provide substantial enough cooling for the 

cathode stalk while operating in the MK I and that a pressurized system would be 

necessary. 

Initial Liquid Nitrogen Test
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Figure 27.   First attempt at cooling the cathode stalk beginning at room temperature 
with no heat applied.  Pressure from opening the valve on the LN tank to fill 
the fill-pot had significant effects on the temperature, as did the amount of 

LN in the fill-pot. 



 47

2. LN2 Fill System Modifications 

The system was reconfigured to allow an increased differential pressure across the 

cathode cooling loop.  The fill-pot was fitted with a pressure regulator valve on its 

exhaust, and a pressure gauge.  The return line from the cooling coil was removed from 

the fill-pot and allowed to exhaust to atmosphere, while the return connection on the fill-

pot was plugged to create a pressure differential.  On the first test the regulator valve did 

not operate as intended, and did not maintain any pressure.  To correct this, a plug was 

used in the regulator valve and it was operated manually, along with the filling of the fill-

pot from the dewar.  The plug was removed while filling the fill-pot, to allow gas to vent, 

and then immediately replaced once the LN tank valve was closed.  Figure 28 shows a 

plot of stalk temperatures vs. time for this test.  The LN tank valve was opened at 1454 

for the initial fill.  It was only partially opened to control the flow going into the fill-pot.  

At 1527 the temperatures began to increase, so the LN tank valve was fully opened.  The 

temperatures recovered and then began to decrease again; these changes can be seen in 

Figure 28.  The stalk hit minimum temperatures at 1605, these temperatures were 

T1=91.4 K, T2=88.2 K, T3=126.4 K, and T4=198.1 K.  The stalk remained cool with 

steady temperatures until the LN was stopped at 2145.  This time the temperatures 

reached lower minimums much more quickly.  Instead of almost three hours to reach a 

minimum during the initial test, following the modifications it took approximately an 

hour and ten minutes.  The results from this test were much more favorable than the 

initial LN test.  Next power was added to the cathode stalk to determine the cooling 

abilities of the system. 
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First Plugged Relief Valve Test
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Figure 28.   Test of cooling system without heat using a modified regulator valve.  All 
temperatures readings are as expected with T4 being the highest due to its 

connection to the flange, and thus the outside world. 

Prior to the next cool down the supporting flange for the cathode stalk was 

wrapped in thermal insulation in hopes that it would help reduce the effects of the outside 

temperature on the end of the stalk.  T1 and T2 reached minimum temperatures in 

approximately two hours while T4 continued to slowly decrease for another three hours.  

The steady minimum temperatures were T1=90.5 K, T2=90.6 K, T3=124.5 K, T4=186.7 

K.  The extra insulation decreased the temperature in T4 by ~10 K.  At 1442 the variac 

was turned on to ten percent of 120 V, equivalent to 2.2 W.  After 20 minutes the voltage 

was increased by 20 percent and then increased by ten percent every ten minutes up to 

60 percent, about 87 W.  The Variac was left at 60 percent until the temperatures became 

steady, which required about three hours.  During this period, towards the end of the three 

hours there was an approximately 20 minute period where the temperature spiked, and 

then dropped back down.  The cause of this anomaly is thought to be a gas bubble 

trapped in the cooling coils, but that has yet to be confirmed.  The steady temperatures at 

60 percent heater power (87 W) were T1=176.0 K, T2=184.2 K, T3=238.2 K, T4=305.3.  

Temperature ranges from cool down to power application can be seen in Figure 29.   
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Using the temperature from T2, and an emissivity of 0.1 for copper, the heat load on the 

cryostat was calculated to be 0.05 W.  In comparison to the 1.7 W calculated for the stalk 

with heat only, this is a 97% decrease, and instead of requiring 50 or more liters of 

helium a day just to counteract the heat from the stalk, it would only require an additional 

1.5 L per day. 

Initial Power Application During LN Cooling
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Figure 29.   Plot of cooling from room temperature to steady state, and then the gradual 
addition of power, stopping at 87 W.  Temperature reached equilibrium at 

~1844. 

The experiment was repeated and the apparatus improved over the next few days.  

One of the improvements was to fill the fill-pot sooner, a nominal fill level of four inches 

was chosen for this configuration, and a stop fill level at 8.5 inches.  This ensured that the 

fill-pot was never empty; at a lower start-fill level, the increased pressure during the start 

of filling could force all of the remaining liquid nitrogen through the cooling loop.  

Increasing the start and stop fill levels greatly improved the cooling rate of the stalk.  T2 

took approximately eight minutes reach its minimum temperature and T1 took 

~20 minutes.  Regardless of configuration during manual operation, T4 consistently takes 

the longest to stabilize, reaching its minimum after about three hours of cooling.   
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Another modification to the experiment consisted of applying a full 100 W to the 

stalk in a step-function turn-on, instead of gradually adding power to the stalk.  This is a 

more accurate reproduction of the effects that would be felt in the MK I.  The results of 

this test are promising.  The best case scenario can be seen in Figure 30.  With 100 W 

applied the equilibrium temperatures were T1=92.1 K,   T2=94.1 K, T3=164.7 K, and 

T4=270.9.  This equates to 0.003 W, or an additional 0.1 L of helium per day to cool the 

heat added by the cathode stalk.  The average T2 temperature seen in this configuration is 

112 K, which equates to 0.007 W or 0.2 L/day. 

Stalk Cooled With LN and 100 W Applied

24 Hour Time

  09:00:00   10:00:00   11:00:00   12:00:00   13:00:00

Te
m

pe
ra

tu
re

 (K
)

50

100

150

200

250

300

350

T1
T2
T3
T4

 

Figure 30.   The stalk was cooled with LN, once the temperatures were steady.  At 1107 
100 W of power was applied.  The spike seen at 0815 was due to pressure 
from the LN tank into the fill-pot being too high.  The tiny bumps that can 

be seen along T2 are caused by the filling of the fill-pot. 

The next step was to make the test stand fully automated.  A new solenoid valve 

was received and installed so that the fill-pot levels were controlled by the liquid level 

controller.  The regulator valve was replaced with a 10 psi pop-up relief valve to 

eliminate the need for capping off the regulator in-between fills.  Temperature sensor 

diodes two and four were replaced due to an overheating casualty where temperatures 

were allowed to reach over 500 K due to an application of heating without any stalk 
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cooling.  (This is analogous to operating the Mark I at full RF power with no stalk 

cooling, and provides a clear indication of why a stalk cooling system is required.)  Later, 

it was discovered that the diode at T3 also received damage and would not operate in the 

290 K range, but would begin working again at some random temperature, higher or 

lower.  New diodes were ordered, but experimentation continued as the temperatures of 

most significance were at locations 1 and 2.  The first run with the 10 psi pop-up relief 

valve showed interesting results.  T2 still dropped very quickly while T1 took about three 

hours to steady out, this was also seen in subsequent tests.  Once power was applied 

fluctuations began in T2 as can be seen in Figure 31.  It seemed that the temperature rises 

and then decreases would both occur on a fill.  This led to the hypothesis that there may 

be gas bubbles created where the heat was too high for the LN to remain in liquid form, 

and that the pressure of the fills pushed the bubbles into and or out of the cooling coil.  In 

the positions where T2 was able to level out at minimum temperature it was measured to 

be ~120 K, only slightly higher than the previous configuration. 

Utilizing 10 psi Pop-Up Relief Valve
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Figure 31.   The system operated optimally until the power was applied at 2052.  
Fluctuations occurred all the way up to when the variac was turned off at 

2348.  No fluctuations in temperature occurred after this time. 
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The test was run again to see if the results were repeatable.  The same fluctuations 

occurred after the 100 W of power was applied at 1352 as can be seen in Figure 32.  

Using the hypothesis that there may be gas bubbles the fill level on the fill-pot was 

increased from four inches to 6.5 inches at 1510 to escalate pressure on the system in 

hopes that it would prevent any bubbles, and eliminate the fluctuations.  Initially, this 

seemed to work, and no fluctuations were seen for two hours; unfortunately, the 

fluctuations began again, but occurred less frequently.  The minimum steady temperature 

at T2 with 100 W of power applied was again ~120 K. 

Fill Level Adjusted
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Figure 32.   Cooling worked nominally until power was added.  The fill level on the fill-
pot was increased to create a higher pressure and flow through the system, 

but fluctuations still occurred. 

The next step was to replace the 10 psi pop-up relief valve with a 15 psi pop-up 

relief valve, in hopes that the higher pressure would eliminate the temperature 

fluctuations.  It should be noted that the pressure gauge had not been reading accurately, 

and it is recommended that in future testing a more accurate and reliable pressure gauge 

is utilized.  In the first test the 15 psi pop-up relief valve worked as intended while 

cooling, but shortly after 100 W of power was applied at 1616 the flow out of the exhaust 

from the cooling coil stopped, as no gas could be felt coming out of the exhaust.  This can 



 53

be seen by the temperature increases in Figure 33.  The fill-pot was still maintaining 

liquid, and as it boiled off would refill.  The LN connections to the coil were also cold so 

the blockage must have occurred after the LN connections but before the coil itself.  At 

1814 the power on the stalk was turned off, once the temperatures dropped back down to 

room temperature the LN began to flow through the system again, initially gas was felt 

coming out of the exhaust, and then liquid.  The experiment was repeated to see if the 

results were repeatable.  They were not; instead, the fluctuations from the prior 

experiments occurred, these are shown in Figure 34.  Here, when T2 was at a steady 

minimum, it was measured to be ~115 K, comparable to the minimum temperatures 

previously measured. 

Malfunction In LN Flow with Power Added
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Figure 33.   At 1616 the variac was turned on to 64 percent of 120 V applying 100 W of 
power to the stalk.  Once power was applied LN flow into the cooling coil 
stopped.  The malfunctions in the diode at T3 are apparent as dropouts in 

the temperature reading. 
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Re-Evalutaion of Flow With Power
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Figure 34.   Instead of the LN flow stopping it continued to cool the system, but with the 

fluctuations seen in previous tests. 

The addition of power to the automated system is the evident variable leading to 

the fluctuations in temperature.  To determine how much power is needed to provoke the 

fluctuations, it was again added in increments to determine the range where the 

fluctuations begin.  The system was cooled to equilibrium temperature, and then power 

was applied utilizing the variac with a 100 percent voltage of 120 V, raising it in 20 

percent increments.  As shown in Figure 35, the cooling system is able to steadily cool 

the cathode stalk with up to 37 W applied (40 percent on the variac).  When the variac 

was increased to 60 percent (87 W) at 1806 the fluctuations immediately began, 

occurring almost every 25 minutes.  It was observed that even though the temperature 

was rising in these fluctuations liquid was still coming out of the exhaust, although less 

than when the temperatures were on a downward trend.  Currently, there is no way to 

measure the flow through the cooling coil or coming out of the exhaust, it is 

recommended this be done in future testing to help determine the cause of these 

fluctuations.  The power range for these anomalies has been narrowed down, but the 

cause of them is still unknown, with gas bubbles being ruled out by the observed liquid 

flow that is exhausted during the temperature increases.  One hypothesis is that the small 

diameter of tubing may be the cause of these fluctuations, testing other cooling 
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configurations inside of the stalk in future research will help to determine this.  T2 in this 

test reaches its minimum at ~124 K, still within the range of the previous tests. 

Pin-Pointing Problem Area
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Figure 35.   At 1359 the variac was turned on at 20 percent (9 W) of 120 V, then at 1525 
it was increased to 40 percent (37 W).  The cooling system was able to 

manage the power applied at these times.  At 1806 the variac was increased 
to 60 percent (87 W).  Here the fluctuations immediately began. 

C. CONCLUSIONS 

Overall the test stand has been effective in replicating conditions in the MK I to 

allow for temperature measurements, and has shown that a cathode cooling system is a 

necessity for the MK I quarter-wave gun.  Despite several curious results in some 

configurations, the overall cooling system has proven successful, with its ability to cool 

the cathode stalk from 439 K to ~120 K fairly consistently.  Once the cause of the 

fluctuations is determined and corrected, the cooling system will be able to reduce a 0.93 

to 3.02 W heat load increase on the helium cryostat to 0.005 to 0.017 W.  This reduces 

the additional liquid helium needed per day from ~87 L to  ~0.5 L. 

 To assist in determining  the cause of the fluctuations, and to optimize the cooling 

system it is recommended that in further research a more accurate and reliable pressure 

gauge is installed, as well as a way to measure flow through the cooling coil.  When the 

pressure gauge was working during manual operation, fill-pot pressure during fills 
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reached 15-20 psi, and in-between fills, when the regulator valve was plugged, and the 

LN tank valve closed, the system maintained approximately 4-5 psi.  Without any 

differential pressure across the cooling loop, other than that provided by gravity, T1 and 

T2 only cooled to ~244 K, whereas with a small amount of pressure differential 

temperatures around 84 K could be maintained.  Having a more accurate pressure gauge 

will allow the user to adjust for the most efficient pressure for the lowest temperatures, as 

well as assisting in determining the cause of the temperature fluctuations. 

 Another revision that could provide even more cooling is to add a cooling system 

to the housing for the cathode stalk.  The housing itself was measured to be between 307 

and 309 K when the stalk was at equilibrium temperatures with 100 W power applied and 

no cooling.  When the stalk was at minimum temperatures with cooling only, the housing 

ranged from 276 K on the flange connected to the stalk (indicating that a large amount of 

cooling was being lost through the flange) to 297 and 298 K at HT1 and HT2.  When the 

stalk had 100 W applied and was being cooled by the cooling coil, the housing was 305 

to 307 K.  It was shown that just by adding insulation during a cooling-only test that T4 

could be reduced by 10K, this urges one to test the possibilities in cooling the stalk 

housing as well.  The joint between the cathode stalk and housing must serve as a radio-

frequency short as well as a mechanical support and thermal isolation, suggesting a 

design study trade-off  between these functions would be appropriate. 

Images taken by the cameras mounted at the windows viewing the tip of the 

cathode stalk (Figure 22) have revealed that there is no evident bending, deflection, or 

major changes in the cathode stalk in going from room temperature to minimum or 

maximum temperature.  Pixel subtraction was used to determine these results in 

Photoshop by layering the two images and taking the difference.  This is with a resolution 

of about 2.8 pixels per millimeter yielding a resolution displacement of ~0.35 mm 

displacement or ~0.34 degree deflections.  The cathode stalk in the MK I gun will be 

supported by the Teflon “spider” besides the mounting plate making it more stable, but a 

more detailed and precise method for measuring these changes may be desired in future 

research to enable the determination of shrinkage values at cryogenic temperatures.  It is 
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important to ensure the position of the cathode stalk does not change, and affect the 

transverse focusing and axial accelerating fields at the cathode tip.  

It has been mentioned that cooling the cathode stalk will extend the lifespan of a 

cesiated photocathode.  With the temperatures measured at 100 W power applied to the 

cathode stalk, and no cooling provided, a cesium photocathode would be inoperable on 

the cathode stalk.  This is an additional motive for cooling the stalk, and one required for 

operability with this kind of cathode.  This leads to the question of how the temperatures 

at the tip of the stalk will affect the quantum efficiency of a photocathode.  Not much 

research has been done in this area, and the test stand can be easily modified to conduct 

such research.  In future studies the cathode stalk test stand will be utilized for testing the 

effects of temperature on the quantum efficiency of photocathodes.   

Lastly, it should be emphasized that the calculations for the heat load on the 

cryostat is an estimate only.  The emissivities used in the calculation for the heat load can 

vary significantly based on material surface finish as well as (for some materials) the 

operating temperatures, and the heat load calculation is also sensitive to the exact 

geometry.  The cathode stalk and niobium cavity are operating in very close proximity to 

each other, with a range of temperatures over the stalk well ranging from 4.2 K to 

approximately room temperature.  In a worst-case scenario, the heat load caused by the 

stalk could be much greater, perhaps up to 20 W.  If this is the case cooling the cathode 

stalk becomes of even more importance than it already is.  It is therefore important to 

prepare an instrumented cathode stalk for installation into the Mark I, as the Mark I has 

now been cleared for high-power RF operation at NPS. 

The test stand and cooling system have provided a glimpse into the inner 

workings of the MK I quarter-wave gun.  It has shown that the temperature on the 

cathode stalk can vary greatly with power applied, and will have a significant effect on 

the cooling necessary to maintain the niobium cavity at superconducting temperatures as 

well as to permit the operation of high-quantum-efficiency cesiated cathodes.  Liquid 

nitrogen has proven to be a viable source for reducing the heat load on the cryostat, as 

well as utilizing the helical copper tubing design to distribute the cooling to the tip of the 

stalk.  Further research needs to be done to stabilize the operation of the cooling system, 
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as well as installing the temperature diagnostics on the cathode stalk inside of the MK I 

quarter-wave gun, based on the successful design pioneered by this thesis research.  This 

research also provides a valuable platform for initiating research into the operation of 

high-efficiency cathodes in cryogenic environments, an important but heretofore 

unexplored area of high-power injector research. 
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APPENDIX 

A. TEST STAND CATHODE STALK DIMENSIONS (cm) 
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B. VACUUM HOUSING FOR TEST STAND (cm) 
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C. INITIAL TEST STAND CONFIGURATION 
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D. CHANGE TO TEST STAND CONFIGURATION 
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E. FINAL CHANGE TO TEST STAND 
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